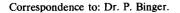
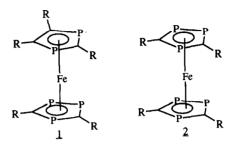
Preliminary Communication

A convenient synthesis of pentaphosphorus analogues of ferrocene [Fe(η^5 -P₂C₃R₃)(η^5 -P₃C₂R₂)]

Paul Binger and Gerald Glaser

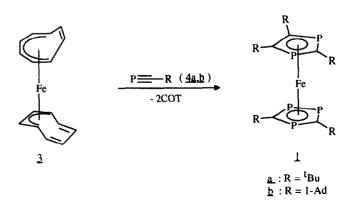

Max-Planck-Institut für Kohlenforschung, Postfach 10 13 53, D-45466 Mülheim an der Ruhr (Germany) (Received April 22, 1994)

Abstract


A convenient synthesis is described of the ferrocene analogues $[Fe(\eta^5-P_2C_3R_3)(\eta^5-P_3C_2R_2)]$ (1a) (R = tert-Bu) and 1b (R = adamanty) from bis(cyclooctatetraene)iron(0) (3) with the phosphaalkynes 4a (R = tert-Bu) and 4b (R = adamanty).

Key words: Cyclisation; Pentaphospha-ferrocene; Phosphaalkynes; Synthesis; Cyclooligomerisation

Pentaphosphorus and hexaphosphorus analogues of ferrocene [Fe(η^{5} -P₂C₃R₃)(η^{5} -P₃C₂R₂)] (1) and [Fe $(\eta^5 - P_3 C_2 R_2)_2$ (2) have recently been prepared by two different routes which are both based on kinetically stabilized phosphaalkynes R-C=P [4a: R = tert-Bu; 4b: R-adamantyl(ad)] as starting material. The first approach starts with the easily prepared lithium- or sodium salts of $[P_2C_3R_3]^{\ominus}$ and $[P_3C_2R_2]^{\ominus}$ as a mixture, obtained from Li[P(SiMe₃)₂ or Na/Hg and the corresponding phosphaalkynes 4a, b [1,2], which are reacted with FeCl₂ to give a mixture of complexes 1 and 2 in 10% yield [3]. The reaction of $(\eta^4$ -1-methylnaphthaline)(η^6 -toluene)iron with the phosphaalkyne 4a leads inter alia directly to the complexes 1a and 2a, but in low yields [4]. The best results for the synthesis of 1 are obtained when the above-mentioned iron(0) complex reacts with five equivalents of 1a, at -20° C up to room temperature [5]. The disadvantage of both methods is that 1 and 2 can only be obtained contaminated with a series of other complexes which necessitates tedious chromatographic separation.


0022-328X/94/\$7.00 SSDI 0022-328X(94)24740-A

We now report a new method for the preparation of the pentaphosphorus analogue of ferrocene **1a**, **b** by which complexes **1** are directly obtained in pure form as dark-green coloured crystals in reasonable yields; no separations of waste are necessary.

The easily obtainable bis(cyclooctatetraene)iron(0) (3) [6,7] reacts smoothly with the kinetically stabilized phosphaalkynes 4a and 4b at 80–100°C. After ca. 3 days of heating, the pure iron complex 1 can be obtained by crystallization from pentane as dark-green coloured crystals in yields of 45% (1a) and 54% (1b). In the reaction mixture 1a and 1b are the only products which can be detected by ³¹P-NMR.

Like ferrocene, the complexes 1a and 1b are extremely stable metallorganic compounds which can be handled in air and can be treated with 30% of aqueous H_2O_2 without showing any signs of oxidation. Thermally 1a remains stable to 216°C, while 1b can be heated up to 380°C before it decomposes. This thermal stability of 1a, b is also shown by their mass spectra, which reveals intact molecules as the 100% peak. Their ¹H-, ¹³C- and ³¹P-NMR spectra are identical with those published earlier [3,4].

The pathway leading to the formation of 1 by reaction of 3 with five equivalents of 4 is still not well understood, but obviously one of the P=C triple bonds must be cleaved during the reaction leading to one 1,3-diphospha- and one 1,2,4-triphosphacyclopentadienyl unit. In parallel with these findings, Wilke et al. have published a paper about the formation of pentamethylcyclopentadienyl chromium complexes by oligomerization of five 2-butynes in the coordinationssphere of a chromium(I) species [8]. This dichotomy reaction was explained by the formulation of a C₁₀ chain bonded to two chromium atoms which is cleaved giving two five-membered rings as the last step of the reaction sequence. Perhaps the formation of 1 from 3 and 4 could be explained in an analogous manner.

Experimental Part

A solution of the iron complex 3 (0.62 g, 2.35 mmol) and the phosphaalkyne 4b (40% solution in hexamethyldisiloxane [9]; 6.25 ml, 2.5 g, 14 mmol 4b) in toluene (50 ml) is heated to 80°C for 3 d; the end of the reaction is determined by ³¹P-NMR. The toluene is distilled off, the residue redissolved in pentane (40 ml) and cooled to -78° C to give dark-green coloured crystals which are separated by filtration and dried at 10^{-3} mbar; 1b (1.2 g) is obtained in 54% yield, m.p. 380°C (decomp.) Anal. found: C, 69.59 H, 7.39; calc. for C₅₅H₇₅P₅Fe(945.8) C, 69.77 H, 7.93%. MS (70 eV) m/z (%) = 946(100) [M]⁺, 811(12) [M – ad.]⁺, 652(57) [M – C₂ad₂]⁺. ³¹P-NMR (27°C, [D₈]toluene, 81 MHz, H₃PO₄, external) δ (ppm) 41.1 (m (not resolved), P₃-ring), 32.6 (s, P₂-ring).

C29

1a is obtained in an analogous manner from 3 (0.70 g, 2.65 mmol) and 4a (1.4 g, 14 mmol) after heating to 100°C for 3 days in toluene (5 ml); yield: 0.66 g (45%) as dark-green coloured microcrystals, m.p. 216°C (decomp.). Anal. found: C, 53.86 H, 8.15 P, 27.98, calc. for $C_{25}H_{45}P_5Fe$ C, 53.96 H, 8.09, P 27.87%; ³¹P-NMR (27°C, [D_8] toluene, 161.5 MHz, H₃PO₄, external). δ (ppm): AB₂: 49.0 (P_A); 48.1 (P_B: J_{P_A,P_B} -44 Hz) (P₃-ring); 32.7 (s, P₂-ring). ¹H-NMR identical with published data [3].

References

- 1 G. Becker, W. Becker, R. Knebl, H. Schmidt, U. Weber and M. Westerhausen, Nova Acta Leopold., 59 (1985) 55.
- 2 R. Bartsch and J.F. Nixon, Polyhedron, 8 (1989) 2407.
- 3 R. Bartsch, P.B. Hitchcock and J.F. Nixon, J. Chem. Soc., Chem. Commun., (1987) 1146.
- 4 M. Driess, D. Hu, H. Pritzkow, H. Schäufele, U. Zenneck, M. Regitz and W. Rösch, J. Organomet. Chem., 334 (1987) C35.
- 5 D. Hu, H. Schäufele, H. Pritzkow and U. Zenneck, Angew. Chem., 101 (1989) 929; Angew. Chem. Int. Ed. Engl., 28 (1989) 900.
- 6 A. Carbonaro, A. Greco and G. Dall'Asta, J. Organomet. Chem., 20 (1969) 177.
- 7 D.H. Gerlach and R.A. Schunn, Inorg. Synth. 15 (1974) 2.
- 8 G. Wilke, H. Benn, R. Goddard, C. Krüger and B. Pfeil, Inorg. Chim. Acta, 200 (1992) 741.
- 9 Hexamethyldisiloxane is the second reaction product in the synthesis of 4b. For the preparation of 1b it is not necessary to separate it completely for 4b; W. Rösch, U. Vogelbacher, T. Allspach and M. Regitz, J. Organomet. Chem., 306 (1986) 39.